Algorithm Find-component-from-edge(t; E)

ثبت نشده
چکیده

1. if e is incident to a triangle t 0 6 = t 2. then (t 0 doesn't exist at the boundary of the TIN) 3. Create an edge record for the edge (z = Z) \ t 0 and link it to the vertex record created for (z = Z) \ e. 4. if t 0 has a vertex v with elevation Z 5. then create a vertex record for v and link it to the edge record for (z = Z) \ t 0 just created. 6. Find-Component-From-Vertex(t 0 ; v) 7. else let e 0 6 = e be the edge incident to t 0 and which spans Z. 8. Create a vertex record for (z = Z) \ e 0 and link it to the edge record for (z = Z) \ t 0 just created.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A practical algorithm for [r, s, t]-coloring of graph

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

متن کامل

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

NC Approximation Algorithms for 2-Connectivity Augmentation in a Graph

Abst rac t . Given an undirected graph G = (V, E0) with IVI-n, and a feasible set E of m weighted edges on V, the optimal 2-edge (2-vertex) connectivity augmentation problem is to find a subset S* __ E such that G(V, E0 U S*) is 2-edge (2-vertex) connected and the weighted sum of edges in S* is minimized. We devise NC approximation algorithms for the optimal 2-edge connectivity and the optimal ...

متن کامل

Simple parallel algorithms for the replacement edge problem and related problems on spanning trees

Let G be a connected, undirected, and weighted graph with n vertices and m edges. Further, let S be a spanning tree of G and T a minimum spanning tree of G. In this paper we present parallel algorithms for solving the following problems: (a) Given G and T , for each edge e of T , determine a replacement edge f by which e should be replaced to create a new minimum spanning tree if e is removed f...

متن کامل

Union - Find and Amortized Analysis

For a weighted graph G = (V,E) where we denotes the weight of edge e ∈ E, recall Kruskal’s algorithm for computing a minimum spanning tree (MST) of G (if you are having trouble remembering the MST problem or Kruskal’s algorithm, you should go back and review the notes for Lecture 13). At a high level, we begin Kruskal’s algorithm by initializing each vertex to be in its own component and the se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994